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Abstract—A numerical study is made of double diffusive convection in a rectangle. The fluid is initially at
rest with a pre-existing stably stratified solutal gradient. The motion is initiated by abruptly raising the
temperature at one vertical sidewall. Comprehensive and systematically-organized numerical solutions to
the full, Navier-Stokes equations under the Boussinesq fluid assumption have been acquired. Far-reaching
analyses are made of the numerical results over a wide range of the solutal Rayleigh numbers R, using the
thermal Rayleigh number, R, = 107, Elaborate plots displaying the details of the evolutions of the flow,
temperature and solutal fields in the cavity are presented. The vertical profiles of the velocity, temperature,
solute, and the local Nusselt number are constructed, delineating the influence of solutal buoyancy effect
relative to the thermal effect. The behaviour of the details of the computed flow characteristics is in good
qualitative agreement with the available experimental visualizations. The categorization of the basic
character of the flow into the supercritical (Ra > Ra,) and subcritical regimes (Ra < Ra), which is based
on experimental observations, is satisfactorily verified by the numerical results. The present numerical
sirnulations are also supportive of the prior observations, which illustrated the qualitative difference in the
time-dependent patterns of the formation of the layered structure in the supercritical and subcritical
regimes. By assessing the present numerical results, the previous estimate of the value of Ra, = 1.5x 10?
is found to be reasonably accurate.
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1. INTRODUCTION

THE sTUDY of double diffusive convective motions in
confined spaces has received considerable attention in
recent years. Much of the efforts have been directed
toward analysing the laboratory flow models which
are formulated in enclosures of geometrically simple
configurations, mostly in rectangular cavities. Of par-
ticular concern are various flow models that have
relevance to applications to the oceanic flow pro-
cesses ; the common diffusing agents are therefore heat
and salt (or some other dissolved substance). The
fundamental aspects of the general subject of double
diffusive convection have eloquently been reviewed
(e.g. see Turner [1, 2], and Huppert and Turner [3]).
One of the striking characteristics of double diffus-
ive convection in an enclosure is the formation of
layers, separated by thin interfaces, under appropriate
conditions. Especially, the emergence of well-mixed
horizontal layers in a stably stratified fluid, by way of
convective motions, has been an issue of much inter-
est. Turner [4], by heating from below a confined fluid
having a statically stable salinity gradient, succinctly
illustrated the layered structure. He estimated the
growth rate of the first layer adjacent to the heated
bottom. His theoretical and experimental inves-
tigations also provided the criteria for the formation
of the successive layers above the first. Incropera and
Viskanta [5], using salt stratified solutions, examined
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the flow heated from below for the cases of two differ-
ent bottom wall conditions, ie. a uniform surface
temperature and a uniform heat flux at the bottom
wall. Tt was seen that the secondary layers were
developed when the thermal forcing at the bottom
boundary satisfied certain restrictive conditions.

The above-cited works dealt with the flows when
the heating was applied at the bottom of the container.
Another important form of the thermal boundary
condition is heating at the sidewall, thereby creating a
system-wide horizontal temperature gradient applied
across the container width. This type of thermal forc-
ing is of great help to a host of modern technological
applications. As observed by Ostrach [6], essential
elements of the heat and fluid transport phenomena
that occur in materials processing involve double
diffusive convection subjected to lateral heating.
Spurred by such practical needs and motivated by a
desire to deepen our basic understanding, several
recent accounts addressed the principal character of
the flow when heating was applied at a vertical side-
wall boundary of the vessel (see, e.g. Thorpe et al. [7],
Suzukawa and Narusawa {8] and Tanny and Tsinober
[9]). It has been established that lateral heating can
also produce the layered structure in a solution with
a pre-existing vertical solute gradient. These exper-
imental studies showed that instability takes place in
the form of a system of roll-cells ; however, one crucial
question is whether these roll-cells are formed simul-
taneously or successively along the heated sidewall.
The classical experiments of Thorpe et al. [7} were con-
ducted by using a thin vertical slot. The experimental
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Ar  aspect ratio, H/L

C, dimensional concentration at the high-
concentration bottom wall

C, dimensional concentration at the low-
concentration top wall

¢ non-dimensional layer thickness, A/y
AC concentration difference at initial state,
C,—C

D mass diffusivity

g gravity

H  height of cavity

h layer thickness observed in numerical
result

L width of cavity

Le  Lewis number, /D

Nu local Nusselt number

P non-dimensional pressure

p dimensional pressure

Pr  Prandtl number, v/x

Ra  effective Rayleigh number, gB8,A0y° /v
R, solutal Rayleigh number, g8, ACL"/xv
R, thermal Rayleigh number, gB,A0L>/xv
R, buoyancy ratio, fAC/BA0

S non-dimensional concentration

T  non-dimensional temperature

t dimensional time

U  non-dimensionalized horizontal velocity

component

NOMENCLATURE

u dimensional horizontal velocity
component

V' non-dimensionalized vertical velocity
component

~

dimensional vertical velocity component
non-dimensional horizontal coordinate
dimensional horizontal coordinate

Y  non-dimensional vertical coordinate

¥ dimensional vertical coordinate.

"o

Greek symbols

fB,  coefficient of volumetric expansion with
concentration

p, coefficient of volumetric expansion with
temperature

n reference layer thickness

6, dimensional temperature at the high-
temperature sidewall

0,  dimensional temperature at the low-
temperature sidewall

A0 temperature difference, 0, — 6,

k  thermal diffusivity

v kinematic viscosity

p  dimensional density

p.  dimensional reference density

T non-dimensional time

Y non-dimensional stream function.

observations clearly demonstrated the horizontal cells
propagating into the interior. However, the pre-
dictions based on the concurrent analyses by Thorpe
et al. exhibited partial inconsistencies with the exper-
imental visualizations. In the experiments, the sense
of rotation in all of the cells was the same, whereas in
the stability analysis counter-rotating pairs of cells
were predicted. Thorpe er al. also presented the sta-
bility diagram for the onset of the cellular convective
motions. Following the original expositions of Thorpe
et al., a considerable number of papers have treated
the general topics of the flow behaviour in a fluid
system as having a stable background vertical solute
gradient subject to an externally-imposed horizontal
temperature gradient. Hart [10] and Wirtz and Liu
[11] were concerned with the onset of cellular con-
vection in a narrow slot. The major results of the
stability analysis of Hart [10] and the numerical com-
putations of Wirtz and Liu [11] were in close agree-
ment with the predictions of Thorpe et al. [7]. The
stream patterns presented by Chen [12] displayed
pairs of counter-rotating rolls in an infinite vertical
slot, which was the anticipated result since he restric-
ted himself to looking at periodic infinitesimal dis-
turbances to the background state. However, the com-
putations by Thangam ef al. [13] for an inclined slot

showed that the motions in all of the cells had the
same sense of rotation.

A decisive and physically insightful argument was
advanced by Chen et al. [14], who considered similar
problems in a relatively wide tank. They pointed out
that there exists a characteristic length scale #, defined
as n = [p(T.., S.)—p(Tw, SN/|dp/dylo, where p(T., S)
denotes the density as a function of temperature T
and concentration S; subscripts oc and w refer to the
conditions in the far field and at the wall, respectively ;
and (dp/dy), indicates the pre-existing stable density
gradient. Physically, n can be interpreted as a measure
of the vertical distance that a heated fluid element
would rise against the pre-existing background den-
sity gradient (dp/dy),. Extending these lines of
thoughts, they asserted that a physically meaningful
Rayleigh number Ra could be defined by using 5 as
the reference length scale. Furthermore, Chen et al.
[14] emphasized the significance of the critical
Rayleigh number Ra. They gave an estimate
Ra, = 15000+2500; when Ra cxceeds this value,
cellular convection is expected to occur. The exper-
imental work of Huppert and Turner [15} and Hup-
pert et al. [16] took measurements of the heights
of the layers over a wide range of Ra. One notable
contention of these investigations was that, beyond a
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Rayleigh number of about 10° the non-dimensional
cell height ¢, ¢ = h/n, was essentially independent of
the Rayleigh number and ¢ was given an approximate
value ¢ 2 0.62 [15] or 0.6 {16].

A perusal of the preceding work clearly reveals that
qualitative depictions have been provided for the basic
physical mechanisms of the layer structure that arises
in a stably stratified fluid due to the lateral heating.
The above-mentioned previous studies substantially
enhanced our fundamental knowledge of the major
dynamic elements. However, at the same time, there
also remain some significant inconsistencies as to the
details of the flow behaviour. One elusive question is
a precise description of the way the cellular patterns
are generated and established. Stated alternatively,
further explorations are needed to determine whether
these cells are formed simultaneously or sequentially,
as Ra traverses a wide range encompassing the sub-
critical (Ra < Ra,) and supercritical {(Ra > Ra,) flow
regimes. Some of the assertions of the prior reports
on the details of the layer structure and the associated
thermal and concentration fields need to be verified
by other independent investigations.

The purpose of the present study is to perform
claborate numerical calculations of the double diffus-
ive convection in a rectangular cavity. The flow is
induced by an impulsively-applied system-wide hori-
zontal temperature gradient in a fluid with a pre-
existing statically stable salinity gradient. To date,
there are not many comprehensive and full-dress
numerical simulations of double diffusive convection
under these physical constraints {see, e.g. Wirtz ez al.
[17]). Obviously, extensive numerical computations
have the advantage in rendering the precise details
of flow evolutions leading to the established layered
structure. However, these attempts require excessively
large computing resources. These formidable practical
difficulties, together with the severity of com-
putational methodologies, have hampered fruitful
progress in numerical studies in this field of research.
Recently, aided by rapid innovations in computing
capabilities, we have secured complete numerical solu-
tions to the full, time-dependent Navier-Stokes equa-
tions at high solutal (R, and thermal (R) Rayleigh
numbers. These numerical results permit precise
descriptions of the evolutionary details of the velocity,
thermal and solutal fields. Flow characteristics in both
the subcritical and supercritical regimes are portrayed.
Critical cross-comparisons of the numerical results
with the available analytical and experimental data
will be conducted. The wealth of flow information
obtainable by the present numerical computations
illuminates the main character of the flow and helps
resolve some of the inconsistencies of the previous
endeavours.

2. THE MODEL

The full, time-dependent, two-dimensional Navier—
Stokes equations, with the Boussinesq-fluid assump-
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tion invoked, describe the motions under the present
consideration. These equations, expressed in properly

non-dimensionalized form and wusing standard
notation, are
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In the above, the non-dimensional quantities are
defined as

= [w/(k/D)}, V=[/(/L)], X=x/L,
Y=y/L, t=[t/(Lx)],
P =plpx* LY, A0 =0,—86, AC=C,—C,
= (0-—06,)/A8,
= (C—C)/AC, Pr=vjk, Le=«x/D,
Ar = HJL,

R, = gBAOL%xv, R,=gBACL%kv,

R, = (BAC)/(BAB) = R/R.

As is evident in the foregoing formulations, the
relevant fluid properties are: kinematic viscosity, v;
thermal diffusivity, x; solutal diffusivity, D; and
coefficient of volumetric expansion with temperature
(solute), B(f,). The relevant non-dimensional pa-
rameters are: the Prandtl number, Pr; the Lewis
number, Le; the thermal Rayleigh number, R,; the
solutal Rayleigh number, R;; and the cavity aspect
ratio, Ar.

A schematic of the flow configuration is shown in
Fig. 1. The cavity is of width L and height H, and the
Cartesian coordinates (x, ), with the corresponding
velocity components (,v), are indicated therein. As
ascertained earlier, in the initial state, the fluid is
motionless and at uniform temperature (7 = 0). How-
ever, the fluid has already been stably stratified by a
vertically-linear distribution of solute. At the initial
instant ¢ = 0, the temperature of the left vertical side-
wall (X = 0) is abruptly raised to 7= 1 and is main-
tained thereafter. All the boundary walls of the cavity
are impermeable to solute, i.e. dS/én = 0. The ensuing
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FiG. 1. Flow configuration and coordinate system.

motions inside the cavity are to be studied. Hence, the
proper initial and boundary conditions are

U=V=T=0, S=1-Y/Aratt=0;
oS : .
U=V=—_—=0o0n all solid boundaries ;

J

T=1lonX=0,
T gonv=0. 4
55}— on Y=0, r.

T'=0onX=1;

In the actual computations, the Prandtl number Pr
and the Lewis number Le were set to 7.0 and 100.0,
respectively, to simulate the approximate values of salt
water. The aspect ratio 4Ar and the thermal Rayleigh
number R, were fixed at 2.0 and 107, respectively. The
solutal Rayleigh number R,, and, accordingly, the
buoyancy ratio R, were the major variable
parameters. In the present calculations, in an effort to
examine the flow behaviour in both the supercritical
and subcritical regimes, R, covers a wide range 0.0-
50.0. Obviously, R, = 0.0 corresponds to the case of
purely thermal convection.

The numerical techniques to solve the above equa-
tions have been well established. We have chosen an
amended version of the SIMPLER algorithm, which
was originally developed by Patankar [18]. The
SIMPLER algorithm is based on an iterative method,
and the convergence criteria are needed. In the present
study, we have adopted the following convergence
criteria at each time step:

o v
ox T ey),

| Ui./ lmux

where ¢, and &, are typically 10~ ° and 10~%, respec-
tively, ¢ indicates the physical variable of interest, and

k k
I

k+1
i

max

&1,

max
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superscript k& denotes the iteration index. The grid net
was highly stretched in the vicinity of the solid walls
to improve resolution of the boundary layers. The
typical grid points in the present study were (51 x 85).
and appropriate modifications were made to the mesh
when finer mesh nets were desired.

Mention should be made of the parallel numerical
computations [19, 20], which have tackled double
diffusive convection in a rectangle when the horizontal
gradients, of both the temperature and solute, are con-
currently tmposed on the vertical sidewalls. The
specifics of the numerical models employed in these
studies were the same as the present work. The above
studies have clearly illustrated the agreement between
the numerical results and the available experimental
observations [21, 22]. This close agreement docu-
mented in the above reports gives credence to the
soundness of the numerical techniques being utilized
in the present numerical computations.

3. RESULTS AND DISCUSSION

The results of extensive numerical computations
will be organized so as to clearly portray the principal
flow characteristics in the two regimes as classified by
Chen et al. [14], i.e. the supercritical (Ra > 1.5 x 107)
and subcritical (Ra < 1.5x10%) regimes. Here, the
Rayleigh number is defined by using the length scale
(= ppAG)|(dp/dy)le) = H/R, as the reference length
scale. Therefore, Ra(= gB Ay jkv) = R(Ar/R,)".
and it follows that, for a given sct of parameter values,
Ra is determined when the value of R, is assigned.

Before proceeding to detailed analyses of the main
results, we shall scrutinize the gross features of the
flow in the very early phases. As expected, the early-
time behaviour displays substantial qualitative simi-
larities between the two regimes. Figure 2 shows the

b
FiG. 2. Plots of stream functions at an early time
(r = 0.0005). Conditions are (a) Ra = 10* (R, = 20.0) and
(b) Ra=233x10° (R, =7.0). Maximum and minimum
values of 1 are () Youx =0, Y = —0.5298<10; (b)
Woae = 0y Woin = —0.1365 % 10°. Values for i are, from the
boundary to the interior, 0.05(/ ., 02000, 0.35¢ 0,

0.500 mins 0.65 i, 0.80¢ i, and 0.95y ..
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FiG. 3. Time evolving plots of stream functions for Ra =2.33x [0° (R, = 7.0). Times are: (a) ©=

0.005: (b) t=10.02;: (c) t=005; (d) ©=0.09;
Fig. 2. (a) Yy = —0.1572x 10%, ., = 0.1264;

Yo = —0.1845 % 10, 4., = 0.4259x 10°%; (d)

—0.3196 x 10*

numerically-constructed stream patterns at a very
early time (¢ = 0.0005), by plotting contours of the
stream function . As is customary practice, ¥ is
defined such that U = dy/éY, V = —dy/0X. Along
the left vertical wall, almost-parallel vertically-upward
motions are induced by the impulsively-applied ther-
mal forcing at the boundary. In both regimes, the
first appearance of cell(s) is noticeable in the corner
region(s) near the heated vertical wall. These depic-
tions of the early time behaviour are qualitatively
consistent with the previous observations (see, e.g.
Thorpe et al. [7] and Wirtz et al. [17]).

First, we shall focus attention on the results in the
supercritical regime. Figures 3-5 present the numeri-
cal results which depict the evolution of flow (Fig. 3),
thermal (Fig. 4) and solutal (Fig. 5) fields for an
illustrative case in this regime (R, = 7.0, thus
Ra =233 x10°). The left vertical sidewall is being
heated, therefore, as shown in Fig. 3, the sense of
rotation of the major cells is clockwise. However, a
closer inspection of the flow data points to the pres-
ence of secondary cells in the interfaces of layers
and/or in the near-stagnant regions. The sense of
rotation in these secondary cells is counter-clockwise.

&) b)

; (¢) T=0.30. Values for iy are the same as in

(B) Wmin = —0.1959 x 10%, 0ax = 0.1664 x 10; (c)
l//min = —0.1634 x 102’ I//mux =0.1062; (e) l//mm =
e = 0.1212,

Nevertheless, it should be remarked that the strengths
of the secondary cells are substantially lower than
those of the major cells. Therefore, in the figures, the
presence of secondary cells is not clearly captured
since the magnitudes are very small (compare the
maximum and minimum values of ¥ in Fig. 3).

We shall now describe in more detail the charac-
teristic behaviour in several temporal stages. In the
early phase (see, e.g. the results for 7 = 0.005), the
horizontal layers are visible only near the bottom
horizontal wall. This region corresponds to the area
where the temperature field shows instability. With
the exception of this near-bottom wall region, the
isotherms are fairly parallel to the heated sidewall.
This indicates the dominance of the conductive heat
transfer mode in the vicinity of the heated wall. The
concentration field is also quite revealing. In the
region near the heated sidewall, the horizontal density
gradient forced by the lateral heating tends to be miti-
gated by the transport of fluid of higher concentration
from the lower level. The concentration at the far
field away from the heated sidewall still maintains the
original vertically-linear distribution.

As time progresses (sce the results for 7 = 0.02), the

c)

F1G. 4. Time evolving plots of isotherms for Ra = 2.33 x 10° (R, = 7.0). Times are the same as in Fig. 3.
Values for isotherms are, from left to right, 0.875, 0.750, 0.625, 0.500, 0.375, 0.250 and 0.125.
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FiG. 5. Time evolving plots of iso-concentration lines for Ra = 2.33 x 10° (R, = 7.0). Times are the same
as in Fig. 3. Values for iso-concentration lines are: A, 0.1; B, 0.2;C,0.3;D,04;E, 0.5;F,0.6; G, 0.7;

H, 08; L

0.9. Maximum and minimum values of concentration are: (a) S, = 0.3850x 1072,

Sar = 0.9954: (b) Sy = 0.6893x 1072, S, = 0.9673; (¢) Sy = 0.8532x 107", S, = 0.9060; (d)
S = 0.1102, S = 0.8512; (€) Sy = 0.2362, S,,,, = 0.7773.

influence of the heated sidewall has advanced further
into the interior. The temperature field discloses
unstable configurations in wider portions of the
cavity. This is concomitant with the production of
more of the horizontally propagating rolls in the bulk
of the flow field. The heated fluid element ceases
upward motion at the level where the original density
distribution compensates the density deficit caused by
the lateral heating. Once this level is reached, the fluid
element turns in the horizontal direction, thereby a
layered structure is formed. The fluid that moves away
from the heated sidewall shows a slightly downward
tilt, since it loses heat to the cold ambient fluid on
this excursion [15]. As demonstrated in Fig. 3(b), the
height of the layer 4, when scaled by n (= H/R,), is
found to be compatible with the estimate of Huppert
and Turner [15], i.e. A/yp = 0.62. The concentration
field, in association with the layered velocity field,
shows appreciable mixing within each layer owing to
vigorous convective activities.

At a still later time (see the results for t = 0.05), the
rolls seem to have reached the opposite cold sidewall.
The entire cavity is filled with fully-developed layers,
and these layers are separated by very thin interfaces.
Since the thermal diffusivity is much larger than the
solutal diffusivity, the thermal adjustment is more
rapid, and therefore, the thermal field readily con-
forms to the layered velocity structure. The thermal
field is stably stratified within each layer. This com-
puted thermal field is consistent with the experimental
observations of Thorpe et al. [7]. After this stage, the
merging process takes place, i.e. two adjacent layers
merge into a new, single layer. This was also seen in
the experiments of Wirtz and Reddy [23]. The tem-
perature and concentration fields are adjusted accord-
ingly. The merging process persists to a rather large
time. The plots shown for the largest time instant
computed in the present study (t = 0.3) exhibit the
general trend of the flow approaching the steady state.
All the rigid boundary walls of the cavity are imper-
meable for salinity ; as the merging process continues,

the concentration field tends to be equalized in the
whole cavity, due mainly to convective mixing and
partly to the diffusion of solute. This implies that,
encompassing the various stages of transition, the pre-
existing linear solute distribution in the initial stage is
being destroyed. This is the expected consequence of
the pre-set conditions that there are no sources or
sinks of the solute on the boundaries of the cavity.
The final state will therefore be characterized by a
unicell flow pattern and stably-stratified thermal
field, together with a homogeneous concentration
(§=0.5).

The time evolutions pictured here are qualitatively
similar to the prior results of Wirtz et al. [17] at
Ra = 10°. The present study, being more specific and
comprehensive, has clearly demonstrated the explicit
and detailed flow patterns of the horizontally pro-
pagating cells and the associated thermal and solute
fields.

As stated earlier, one of the striking features that
were uncovered by the previous experiments was the
existence of the distinctly-defined layered structure. In
the present study, such a layered structure has been
convincingly ascertained by extensive numerical
results. In order to gain further physical insight, Fig.
6 exhibits the vertical profiles of the local Nusselt
number Nu(= —JT/0X]y_,) at the heated sidewall,
and of temperature and concentration along the mid-
width (X = 0.5) at time instant t = 0.05. Note that,
in these intermediate stages, the whole cavity is filled
with well-organized horizontal layers (see Fig. 3(c)).
Careful inspection of the Nu profile of Fig. 6 indicates
that the local maxima correspond to the levels of the
centres of the layers (exactly speaking, to the slightly
lower part of the centres of the layers due to clockwise
circulation), and the local minima to those of the
interfaces between the layers. This spatially periodic
behaviour of the vertical profile of Nu is in close
agreement with the experimental findings of Huppert
and Turner [15]. As in the foregoing statements, the
temperature field is stably stratified in the localized
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FiG. 6. Vertical profiles of (a) the local Nu at X = 0, (b) temperature and (c) concentration at X = 0.5.
Conditions are Ra = 2.33 x 10° (R, = 7.0) and t = 0.05.

area within the layer, and the conductive mode is
prevailing in the regions of the interfaces. The charac-
teristic S-shaped temperature profile bears this point.
The salinity profile displays a step-like distribution.
Within each layer, concentration is substantially uni-
form due principaily to convective mixing. The above
numerical results are in fair agreement with the prior
experimental observations (see, e.g. Thorpe et al. [7]
and Huppert and Turner [15]). Such consistency is
highly encouraging ; the specific comparisons between
the present numerical simulations and the preceding
experiments are mutually-supportive of each other. In
particular, the present numerical data are strongly
corroborative of the experiments both in qualitative
observations and quantitative measurements. In pass-
ing, a further scrutiny of the temperature and con-
centration profiles of Fig. 6 reveals that the interfaces
are of the diffusive type; i.e. the fluid of high tem-
perature and high concentration underlies the fluid of
low temperature and low concentration [9].

As part of an effort to adduce the time-dependent
layered flow structure, the vertical profiles of the hori-
zontal velocity along mid-width (X = 0.5) are plotted
in Fig. 7. Three different time instants are represented

to portray the evolutions. At an early time (t = 0.005),
the broad stagnant region occupying much of the
interior is discernible. As illustrated in Figs. 3(b)-
(d), highly fluctuating velocity profiles are visible at
intermediate and large times, reflecting the presence
of the layered structure. As time elapses, the overall
solute gradient, which was initially strongly stabi-
lizing, weakens as a consequence of convective mixing.
After the process of layer-merging commences, the
convective activity is, in general, enhanced. This may
be explained by noting that the effective Rayleigh
number of a merged layer is larger than the Rayleigh
number of an individual component layer before the
merging. It should also be mentioned that, by way of
the merging process, the heights of the layers undergo
readjustments, as is apparent in the plots of the stream
function ¥ in Fig. 3.

In order to assess the effect of Ra on the trend
of flow characteristics, several more runs have been
computed. Figure 8, at Ra = 8 x 10* (R, = 10.0), dis-
plays the flow evolutions toward the establishment of
the fully-layered structure in the whole cavity. The
value of Ra in Fig. 8 is smaller than that shown in
Fig. 3, but this still belongs to the supercritical regime

2. 2 2.
0 [
vl i
K
L 1 1. 4
O‘ - | S| j J 0' | 1 | J 0. Lx Il ] |
=20, 0. y =0 -250. 0. y 0. -0 0. 20.
@ b) ) v

F1G. 7. Vertical profiles of horizontal velocity at X = 0.5. Conditions are Ra = 2.33 x 10° (R, = 7.0). Times
are: (a) t = 0.005, (b) t = 0.05 and (¢) t = 0.3. The locations of interfaces at mid-width (X = 0.5) are
denoted by x.
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Fi6. 8. Time evolving plots of stream functions for Ra = 8 x 107 (R, = 10.0). Times are: {a) t = 0.01,
(b) =002, (¢) t=003 (d) t=005 (e} T=0.10. Values for ¢ arc the same as in Fig. 2.

(8) Y = —0.1498 x 10°,
T

Ve = 0.4850; (b}

01626 X 10%, o, = 01638 % 107 (d) oo = —O0.1714x 102 g, = 093331 ()

W = —0.1611 x 107, 4, = 0.1079% 10 ()

x)'(/mm =

—0.2484 x 10°, 4., = 0.1427.

as classified by Chen et al. [14]. At small times (Fig.
8(a) for © = 0.01 and Fig. 8(b) for © = 0.02), several
rolls are formed in the vicinity of the horizontal walls.
However, a part of the interior surrounding the mid-
depth is still substantially motionless, constrained by
the prevailing stable concentration gradient. The
height 4 of the layer is found to be comparable to the
predictions by Huppert and Turner [I5], ic.
hin =~ 0.62. The subsequent plots exhibited in Figs.
8(c), (d) and (e) demonstrate the gradual increase of
the number of layers and the horizontal propagation
of these layers. Figure 8(e), at a relatively large time
7 = 0.1, shows a plot which depicts the stage when the
whole cavity is filled with a system of well-developed
horizontal layers. In the transition process of reaching
this stage, several cells of smaller sizes and of sub-
stantially diminished magnitudes rapidly merge
and/or disappear.

Figure 9 shows the results at a higher Ra
{Ra = 2.96x 10°, R, = 3.0) than thatin Fig. 3. At this
high Ra, the way the layers are formed near the heated
sidewall is more simultaneous than were seen at lower
Rayleigh numbers. These spontaneously-formed lay-

ers propagate toward the opposite wall more rapidly
than the cases of lower Rayleigh numbers. The scale
of layer height A is still compatible with the predictions
of Huppert and Turner {15}, i.e. A/p = 0.62. As is
intuitively clear, a higher Ra implies, in the present
study, a lower R,; accordingly, the comparative mag-
nitudes of the convective activities in the transition
phases are stronger, since the prevailing solutal effects
are weaker. Both the generation of layers and sub-
sequent merging of the adjacent layers proceed more
vigorously at higher Rayleigh numbers. At the rela-
tively large time instant shown in Fig. 9(e) for = 0.1,
only two distinct layers are discernible. For this par-
ticular run, calculations were performed to a very
large time, T = 0.6. Flows evolve very slowly at such
large times, but the results confirm the expectations.
At 7= 0.6 (Fig. 8(f)), the unicell flow patterns arc
obtained. This is very akin to the well-known steady-
state flow field in a purely thermal convection at high
Rayleigh numbers in a cavity with differentiaily heated
sidewalls [24]. This can easily be anticipated in view
of the fact that there are no reservoirs for solute in
the present problem.

A

()

Fic. 9. Time evolving plots of stream functions for Ra = 2.96 % 10° (R, = 3.0). Times are: (a) v = 0.01,

(b) T =0.02, (¢) t = 0.03, (d) r = 0.05, (e) T = 0.10, (f) T = 0.60. Values for \ are the same as in Fig. 2. (a)

Yoin = —0.3336 % 102, th g = 0.5037, (b) Yo = —0.3265 x 10, 5 = 0.9985; (C) Y = —0.3718 x 10°,

Winar = 0.4419 (d) Ypin = —0.3027 x 10%, 0 = 0.1002 x 103 (&) Yoo = —0.3794 102, Ypax = 0.0; (D)
Wiin = —0.5908 x 10°, ¥, = 0.0
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Now, we shall turn to the subcritical regime
(Ra < 1.5 x 10%) as categorized by Chen ef al. [14]. Tt
has previously been asserted that, in the subcritical
regime, the layers form successively rather than simul-
taneously as was seen in the supercritical regime. The
numerical results for a representative subcritical con-
dition (Ra = 10%, R, = 20.0) are illuminated in Figs.
10-12. At small times (see Figs. 10(a), 11(a) and 12(a)
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for 7 = 0.01), the convective activities are restricted
to a narrow region very close to the bottom wall.
The prevailing solute gradient is substantial so that
convective motions are accordingly less vigorous.
Over much of the length of the heated sidewall, the
isotherms are parallel, implying that the dominant
heat transfer mode is conduction. Only in the bottom
corner arca do the isotherm patterns suggest weak

&‘

&)

F16. 10. Time evolving plots of stream functions for Ra = 10* (R, = 20.0). Times are: (a) t = 0.01, (b)

=010, (¢) 1=020, (d) 1=030, (¢) t=0.50. Values for y are the same as in Fig. 2. (a)

Woin = —0.9444 x 10, ¢, = 0.2965; (b) Yo = —0.1766 % 102, W0, = 0.7225; (€) Yy = —0.2035 % 107,
Vimax = 0.6824; (d) W = —0.2317 % 107, W = 0.4990; (€) ¥ = —0.3103 x 102, ., = 0.6702.

gfa)

b)

c) @ )

Fic. 11. Time evolving plots of isotherms for Ra = 10* (R, = 20.0). Times are the same as in Fig. 10.
Values for the isotherms are the same as in Fig. 4.
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F1G. 12. Time evolving plots of iso-concentration lines for Ra = 10* (R, = 20.0). Times are the same as in

Fig. 10. Values for the iso-concentration lines are the same as in Fig. 5. (a) S, = 0.5164 x 102,

Smax = 09928 (b) S, =0.1127%x 107", S, =0.9280; (¢) Sy =0.1336x10"", S, =0.9053; (d)
Swin = 0.6909x 1071, S, .. = 0.8860: (&) S, = 0.1198. S, = 0.8509.
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convective motions. Stmilarly, the pre-existing ver-
tically-linear solutal field remains virtually unaffected
in the bulk of the cavity. Only very near the heated
sidewall, in particular, in the bottom corner region, is
a slight upward tilting of the iso-solutal contours seen.
At later times, the sequential plots for 7 = 0.10 and
0.20 clearly demonstrate the successive appearance of
a new layer on top of the layers already in existence.
In conjunction with the successive generation of the
layers, the upper regions of vertically parallel
isotherms, where conduction is dominant, shrink in
sizc in the vertical extent toward the top wall
However, the conduction-dominant thermal field
advances toward the cold vertical sidewall. In the
bottom portions of the cavity, thermal instability is
induced, which brings about the successive formation
of layers. Over these intermediate transition stages,
the layer height # is not scaled with O(y). As shown
in Figs. 10(b)—(d), in the intermediate phases, as time
clapses, the overall strengths of convective motions
increase ; also, the height of the top-most layer of the
system of layers in the lower regions of the cavity
increases. On the other hand, the thicknesses of the
two bottom layers remain fairly constant after
7 ~ (.1; the growth of these two bottom layers is
constrained by the bottom boundary wall and the top-
most layer near the central portion of the cavity. At
a rclatively large time (see Fig. 10(d) for 1 = 0.30), a
layer forms near the top boundary wall. The cor-
responding features also take place near the top wall
in the temperature and solutal ficlds. As ascertained
previously, the formation of layers is accompanied
by stable temperature fields and well-mixed solute
distributions in the localized regions concerned. A
perusal of the numerical results reveals that the
appearance of the layer near the top wall is delayed
to a later time as Ra decreases, i.¢. as R, increases.
This is attributable to the influence of a stronger pre-
existing stabilizing solute distribution, which inhibits
thermal convection in the cavity. As time progresses
further, at a very large time (sec Fig. 10(e) fort = 0.5),
a new layer is formed above the upper-most layer of
the system of layers in the lower regions of the cavity.
It is worth noting that the adjustment of the solutal
field toward complete homogenization takes place at
a slow rate. It is obvious that the large-time evolution
is accomplished at a much slower ratc in the subcritical
regime than in the supercritical regime.

By the preceding comparisons of the numerical
results, which are typical of the supercritical (see Figs.
3-5) and the subcritical regime (see Figs. 10-12), it is
now clear that the evolutionary processes of
layer formations can be characterized as being
simultaneous and successive in these two regimes,
respectively.

In order to further the details of the characteristics
of the subcritical regime, using the results of Figs. 10—
12, the local Nusselt number at the left vertical wall,
the temperature and solute profiles along the mid-
width (X = 0.5) at a relatively large time {t = 0.20)

J. W. Leg and J. M. Hyuxn

are plotted in Fig. 13. In a manner similar to the case
of the supercritical regime, the Nu profile contains
local maxima at the centres of the layers and local
minima at the interfaces. Also, the S-shaped tem-
perature profile and the step-like solutal distribution
are manifested in the region occupied by the layers.
However, as stated carlier, the layer formation is suc-
cessive ; therefore, in the upper portions of the cavity
where no layers have been formed, Nu = O(1). This
reflects the fact that convection is suppressed and the
heat transfer is mainly effectuated by conduction in
this region. The temperature decreases monotonically
vertically upward, and the solutal distribution main-
lains the original linear gradient. Only in a narrow
area adjacent to the top wall are a slight stratification
of the thermal profile and a locally homogenized solu-
tal field visible ; this implies the initiation of the layer
near the top wall as displayed in Fig. 10(e) at this time
instant.

The above examinations of the comprehensive
numerical data are supportive of the characterizations
offcred by Chen et of. [14] with regard to the existence
of the critical Rayleigh number Ra, = 1.5x 10 Inan
cffort to validate the quantitative soundness of this
estimate of Ra,, several more runs have been executed
using values of Ra in the close neighbourhood of the
experimentally observed value of R, = 1.5x 10%.

Figurc 14 shows the flow ecvolutions at
Ra =237x 10" (R, = 15.0), a value slightly higher
than Ra,. As depicted in Fig. 14(b). at a reasonably
small time {7 = 0.03), several layers are formed in
the bottom region, which is similar to the preceding
results in Fig. 10. However, it is noticeable that a layer
appears near the top wall even in this early phase. It
is also worth pointing out that the height of the layer,
hiw, assumes a value slightly less than unity. This is
strongly consistent with the prior observations by
Chen et al. [14] and Huppert and Turner [15]. Thesc
previous accounts asseried that A/x falls steadily from
unity to a valuc of 0.62+0.05 as Ru increases from
Ru, to a value of around 5x 10°. In summary, the
results at a value of Ra near the borderline of Ra,.
show a hybrid nature exhibiting the character of both
the supercritical and subcritical regimes. For the run
of Fig. 14, the appearance of the layer near the top
wall in the early stage weighs more heavily toward
a characterization of the simultaneous, rather than
successive, flow evolution of the supercritical regime.

In contrast to the results of Fig. 14, Fig. 15 portrays
the flow patterns at Ru = 2.96 x 107 (R, = 30). a value
slightly lower than that shown in Figs. 10-12. During
the entire transicnt phasc up to a very large time
{(t = 0.51), only a single layer, formed near the bottom
wall, is discernible. As time progresses, this single
layer grows in size, indicating the increase of con-
veetive activity in this region. In the bulk of the flow
field, the convective motions are inhibited by the
strong influence of the pre-existing stable con-
centration gradient. Similar results were obtained
from other runs, using values of Ra further below Ra..
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F1G. 13. Vertical profiles of (a) the local Nu at X = 0, (b) temperature and (c) concentration at X = 0.5.
Conditions are Ra = 10* (R, = 20.0) and t = 0.20.
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FiG. 14. Time evolving plots of stream functions for Ra = 2.37 x 10* (R, = 15.0). Times are: (a) r = 0.01,
(b) t=0.03, (¢c) 1=0.05 (d) t=0.15 () ©=0.30. Values for 1 are the same as in Fig. 2. (a)
l//mm = —0.1180 x 1023 l/Imux = .4871 5 (b) l//mm = —0.1358 x 102* wmux = 083573 (C) ltbmm = ~0.1439 x 102»

Wowe = 0.1372% 105 (d) e = —0.2697 x 102,

Y = 0.1348 % 107 (&) Yo = —0.2489 x 102,

Wiy = 0.1460.
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Fig. 15. Time evolving plots of stream functions for Ra = 2.96 x 10° (R, = 30.0). Times are: (a) = 0.01,

(b) ©=0.10, (¢) t=020, (d) 1=030, (¢) t=0.51. Values for y are the same as in Fig. 2. (a)

Ynin = —0.6646 x 10, Y1, = 0.5895; (b) Yy = —0.1376 X 107, Yrnae = 0.5225; () Yrpin = —0.1802 x 107,
Winas = 0.5949 ; (d) Yin = —0.1970 % 10, Y = 0.1761; (€) Yy = —0.2966 x 10, ..., = 0.4660.

Figure 16 is designed to illustrate the explicit effect
of Ra on the local Nusselt number at the heated
sidewall. Figure 16(a) typifies the results at a small
time (r = 0.01). The maximum value of Nu, in general,
increases as Ra increases. This is anticipated since, at

high Re, the bottom layer is developed at an earlier
time instant and intensifies more rapidly. At a very
small value of Ra, much of the heat transfer near the
heated sidewall i1s conduction dominant. The fluc-
tuating Nu profile at large Ra is clearly in line with the



F1G. 16. Vertical profiles of the local Nu at X = 0. Times are
(a) t = 0.01 and (b) 7 = 0.3. The values of Ra arc: —-—

Ru = 8x 107 (R, = 0.0, purely thermal convection); ----.
Ru=64x10" (R,=350); —- . Ra=38x10*
(R,=10.0): -, Ra=10" (R, =200); — ——

Ra = 6.40 x 107 (R, = 50.0). The location of symbol x on
the abscissa denotes the value of Nu obtainable under
conduction.

initiation of the roll formation near the heated side-
wall. Figure 16(b) shows the results at a large time
(z = 0.3). At large Ra, the conduction-controlled heat
transfer virtually disappears, and the fluctuating Nu
profile, compatible with the layered flow structure, is
in evidence. The maximum convective heat transfer
takes place in the regions occupied by the bottom-
most layer.

4. CONCLUSION

Comprehensive and thorough analyses have been
made of the numerical solutions for the time-depen-
dent double diffusive convection in a cavity. The
numerical results showed that thc fundamental
character of the flow may be classified into the super-
critical  (Ra > Ra. = 1.5x10% and subcritical
(Ra < Ra,) regimes. This categorization is consistent
with the prior observations by Chen ef /.

In the supercritical regime, the appearance of the
horizontal layers, formed in the heated sidewall and
subsequently propagating horizontally toward the
cold sidewall, takes place simultaneously along the
heated sidewall except in the vicinity of horizontal
walls. The characteristic S-shaped temperature profile
and the step-like solute distribution are visible in the
whole cavity, in line with the establishment of the
layered flow structure.

In the subcritical regime. the formation of the hori-
zontal layers is achieved successively, commencing
at the bottom wall and ncew layers are sequentially
formed above the top of the already-developed layers.
In the regions where no layers have yet formed, the
temperature field is conduction dominant and the
solutal ficld retains the original pre-existing vertically-
linear gradient. The descriptions obtainable from the
numerical solutions of the gross features of the evolu-
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tions of the flow fields are in close qualitative agree-
ment with the available experimental visualizations.
The height of the layer 4 was found to be scaled with
#: this finding is in support of the contentions derived
by the previous estimates by Huppert and Turner.

The quantitative rcasonableness of the value of
Ra, = 1.5x 107, given by Chen e/ «/.. has been lested
by the present numerical results. Carcful comparisons
of the computed data reveal that the value of Rau,
based on the experimental finding satisfactorily indi-
cates the demarcation line separating the suberitical
and supercritical regime.
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DOUBLE DIFFUSION DEPENDANTE DU TEMPS DANS UN FLUIDE STABLE
STRATIFIE AVEC CHAUFFAGE LATERAL

Résumé—On étudie numériquement la double diffusion dans un rectangle. Le fluide est initialement au
repos avec un gradient solutal préexistant de stratification stable. Le mouvement est créé par une élévation
brusque de température a une paroi laterale verticale. Ont été obtenues des solutions numériques des
équations complétes de Navier-Stokes avec hypothése du fluide de Boussinesq. Des analyses sont faites
pour un large domaine de nombre de Rayleigh solutal R et un nombre de Rayleigh thermique R, = 107
On construit les profils verticaux de vitesse, de température, de concentration et de nombre de Nusselt, en
délimitant I'influence de l'effet de flottement solutal relativement a ’effet thermique. Le comportement de
I’écoulement est en bon accord qualitatif avec les visualisations expérimentales. La caractérisation du
caractere fondamental de I’écoulement dans le régime supercritique (Ra > Ra,) et subcritique (Ra < Ra),
basée sur les observations expérimentales, est vérifiée par les résultats numériques. Les simulations
numériques illustrent la différence quantitative de formation dans le temps de la structure lamellaire dans
les régimes supercritique et subcritique. L’estimation antéricure de la valeur Ra, = 1,5 x 10* est trouvée
étre raisonnablement précise.

ZEITABHANGIGE DOPPELDIFFUSION IN EINEM STABIL GESCHICHTETEN FLUID
BEI SEITLICHER BEHEIZUNG

Zusammenfassung—Die doppelt-diffusive Konvektion in einer rechteckigen Anordnung wird numerisch
untersucht. Das Fluid ist anfangs in Ruhe und besitzt einen stabil geschichteten Losungsgradienten. Eine
plétzliche Erhéhung der Temperatur der einen senkrechten Seitenwand fithrt zum Einsetzen der Bewegung.
Der vollstindige Satz der Navier—Stokes-Gleichungen wird unter Anwendung der Boussinesq-Approxi-
mation numerisch geldst. Die Ergebnisse, welche einen weiten Bereich der Losungs-Rayleigh-Zahl R,
unter Verwendung der thermischen Rayleigh-Zahl R, = 107 abdecken, werden eingehend analysiert. Die
Entwicklung des Stromungs-, Temperatur- und Konzentrationsfeldes im Hohlraum wird grafisch darge-
stellt. Die senkrechten Profile der Geschwindigkeit, der Temperatur, der Konzentration und der értlichen
Nusselt-Zahl zeigen den relativen EinfluB des konzentrationsbedingten Auftriebs gegeniiber dem ther-
mischen Auftrieb. Das berechnete Verhalten der Strémung stimmt gut mit verfiigbaren visuellen Stro-
mungsbeobachtungen iiberein. Die Einteilung der Strémungsform in iiberkritische (Ra > Ra,) und unter-
kritische Bereiche (Ra < Ra), die auf experimenteller Beobachtung fuBit, wird durch die numerischen
Ergebnisse in befriedigender Weise bestitigt. Die vorgelegte numerische Simulation bestitigt auch frijhere
Beobachtungen zum qualitativen Unterschied bei der zeitlichen Entwicklung der geschichten Struktur im
iiberkritischen und im unterkritischen Bereich. Der Wert Ra, = 1,5 x 10* war frither iiberschligig ermittelt
worden, er wird durch die vorliegenden numerischen Ergebnisse als hinreichend genau bestitigt.

HECTALITUOHAPHAS NU®OY3UA TEIJIA U MACCHI B YCIIOBUAX TOTIEPEYHOIO
HATPEBA XHAKOCTU C YCTOMYUBON CTPATUGUKALIMEN

AunoTamua—YHCIeHHO HCCAENYeTCH KOHBEKIHA C YueToM OMddY3MN Tenia 1 Macchi B NPAMOYTOJILHO#M
noJ0ocTH. [lepBOHA4AILHO KHUAKOCTL HAXOMMTCA B COCTOSHHH MOKOS NPH HaJIMYMM IPAaJMEHTA pacTBO-
PEHHOTO BelleCTBa C YCTOWYMBOMH cTpaTHduKanueH. [IBukeHHE BBI3BHIBACTCH PE3KUM DOCTOM TeMIlepa-
TYpbl Y OJHOM H3 BEPTHKAJIbHBIX GOKOBBIX CTCHOK. ITONIyHeHbl YAC/ICHHbIC PELLEHHS NOJIHBIX YpaBHEHHH
Hasbe-Croxca B npu6mxenuu Byccurecka. C UCTIO/1b30BaHHEM TEILIOBOTO YHcaa Panes R, = 107 npo-
BENEH aHAJIU3 YHCJICHHBIX PE3YJbTATOB, NMOJYYCHHBIX B IIMPOKOM JMANA30HE W3MEHEHHil uucen Pases
Ui pactBopeHHoro sewectsa R, . INpeacrasiensl noapoGHbie rpaduKH, WILTFOCTPHPYIOILHKE 3BOSIOLHIO
noJiell TCYECHHS, TEMIEPATYPEl H KOHIEHTPAIMH PACTBOPEHHOrO BEILECTBA B M0J0CT. [10CTpOeHLI BEPTH-
KaNabHBIE NPO(QHIA CKOPOCTEH TeMNepaTyp, KOHUEHTPAUMi DACTBOPEHHOTO BEIIECTBA H JIOKAJILHBIX
uncen HyccenbTa, onuceiBaromue B3aMMOCBS3b MEXIy NOABEMHON CHJION M3-33 HEOJHOPOJHOCTH KOH-
HEHTPALHH H TEMIOBbIM 3 dekToM. PacCyHTaHHEIC XapaKTEPHCTHKH TEHEHHs KAYECTBEHHO COTIIACYIOTCH
¢ HMEIOIHMHCS IKCIEPHMEHTAJILHBIMHE JaHHBIMH 1O BH3yanmsauuu. HalifleHHAst W3 SKCIEPHMEHTOB
knaccuuKalns OCHOBHBIX PEXHMOB TEYEHHS HA 3aKpUTHYeCKuil (Ra > Ra.) u mokpuruueckuii (Ra <
Ra;) y#oBneTBOPUTENBHO NONTBEPXKIACTCA YHCIACHHBIMHM De3yibTaTaMu, IIpHBeneHHOE YHC/IEHHOE
MOJEJIMPOBAHUE TOATBEPXKAAET TAKXKE PaHee CHeNaHHbie HAOJONEHHS, WIUTIOCTPHPYIOLIHE KaueCTBEH-
HOE Pa3jIHYie HECTALUMOHAPHBIX KAPTHH OOPa30BAHNS CJIOHCTOH CTPYKTYPHI B 3aKPHTHYECKOM H IIOKDH-
THYECKOM PpEeXHMAX. AHAJIN3 MOJIYYEHHBIX WYHCJICHHBIX Pe3yJbTATOB MO3BOJAET 3aKJIIOYMTh, YTO
MpeablayIas oucHka 3HaueHus Ra, = 1,5 x 10* sBnsieTcs AOCTATOYHO TOYHOM.



